Vol: 54(68) No: 2 / June 2009 Low-cost Takagi-Sugeno Fuzzy Controller for an Electromagnetic Actuator Claudia-Adina Dragos Department of Automation and Applied Informatics, “Politehnica” University of Timisoara, Faculty of Automation and Computers, Bd. V. Parvan No. 2, RO-300223 Timisoara, Romania, e-mail: claudia.dragos@aut.upt.ro Stefan Preitl Department of Automation and Applied Informatics, “Politehnica” University of Timisoara, Faculty of Automation and Computers, Bd. V. Parvan No. 2, RO-300223 Timisoara, Romania, phone: (+40) 256-40-3226, e-mail: stefan.preitl@aut.upt.ro, web: www.aut.upt.ro/~spreitl/ Radu-Emil Precup Department of Automation and Applied Informatics, “Politehnica” University of Timisoara, Faculty of Automation and Computers, Bd. V. Parvan No. 2, RO-300223 Timisoara, Romania, phone: (+40) 256-40-3224, e-mail: radu.precup@aut.upt.ro, web: www.aut.upt.ro/~rprecup/ Keywords: Takagi-Sugeno fuzzy controllers, fuzzy systems, electromagnetic actuator Abstract The paper presents a fuzzy control solution and an analysis of an electromagnetic actuator. Two Takagi-Sugeno fuzzy controllers are developed. The two fuzzy control solutions have been tested with respect to the step and rectangular modifications of the reference input. Digital simulation results are included. References [1] I. Škrjanc and D. Matko, “Fuzzy predictive functional control in the state space domain”, Journal of Intelligent and Robotic Systems, vol, 31, pp. 283–297, 2001. [2] I. Škrjanc, S. Blažič, and D. Matko, “Model-reference fuzzy adaptive control as a framework for nonlinear system control”, Journal of Intelligent and Robotic Systems, vol. 36, pp. 331–347, 2003. [3] A. Tahour, H. Abid, A. G. Aissaoui, and M. Abid, “Speed Control of Switched reluctance motor using a fuzzy adaptive controller”, (Internet presentation). [4] S. Preitl, R.-E. Precup, and Z. Preitl, “Two-degree-of-freedom fuzzy controllers: structure and development,” in Proceedings of International Conference “In memoriam John von Neumann”, Budapest, Hungary, 2003, pp. 49–60. [5] S. Di Cairano, A. Bemporad, I. V. Kolmanovsky, and D. Hrovat, “Model predictive control of magnetically actuated mass spring dampers for automotive applications,” International Journal of Control, vol. 80, pp. 1701–1716, Nov. 2007. [6] J. Lu, G. Chen, and H. Ying, “Predictive fuzzy PID control: theory, design and simulation,” Information Sciences, vol. 137, pp.157–187, Sep. 2001. [7] C. Brosilow, B. Joseph, “Techniques of Model-based Predictiv Control”, Prentice Hall PTR, Upper Sanddle River, NJ, 2002. [8] C. A. Dragos, S. Preitl, M. B. Radac, and R. E. Precup, “Nonlinear and linearized models and low cost control solution for an Electromagnetic Actuator”, in Proceedings of 5th International Conference on Applied Computational Intelligence and Informatics (SACI 2009), Timisoara, Romania, 2009, 6 pp. [9] C. A. Dragos, “Bibliographic Study Concerning Model-Based Predictive Control and Collateral Control Problems”, Doctoral Report, “Politehnica” University of Timisoara, Timisoara, Romania, 2009 (in Romanian). [10] W.-H. Ho and J.-H. Chou, “Design of Optimal Controllers for Takagi–Sugeno Fuzzy-Model-Based Systems”, IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, vol. 37, no. 3, May 2007. [11] S. Preitl, R. E. Precup, and Zs. Preitl, “Control Algorithms and Structures”, Editura Orizonturi Universitare Publishers, Timisoara, 2009 (in Romanian). [12] K. J. Åstrom, T. Hagglund, “PID Controllers, Theory, Design and Tuning”, Research Triangle Park, NC, 1995. [13] R. E. Precup, and Stefan Preitl, “Fuzzy Controlers”, Orizonturi Universitare Publisher, Timisoara, 1999. [14] R. Isermann, “Mechatronic Systems: Fundamentals”, Berlin: Springer, 2005. [15] A. C. Van der Heijden, A. F. A. Serrarens, M. K. Camlibel, and H. Nijmejer, “Hybrid optimal control of dry clutch engagement”, International Journal of Control, vol. 80, pp. 1717–1728, Nov.2007. [16] K. Hameyer, and M. Nienhaus, “Electromagnetic Actuators – Current Developments and Examples”, (Internet presentation). [17] E. Sontag, “Nonlinear regulation: the piecewise linear approach”, IEEE Trans. Autom. Control, vol. 26, pp. 346–358, April 1981. [18] I. Škrjanc, S. Blažič, and O. Agamennoni, “Interval fuzzy model identification using l∞-norm,” IEEE Trans. Fuzzy Syst., vol. 13, pp. 561–568, Oct. 2005. [19] Z. C. Johanyák and S. Kovács, “Sparse fuzzy system generation by rule base extension,” in Proceedings of 11th International Conference on Intelligent Engineering Systems (INES 2007), Budapest, Hungary, 2007, pp. 99–104. [20] D. Hladek, J. Vascak, and P. Sincak, “Positional fuzzy relations in robot control,” in Proceedings of IEEE IEEE 6th International Conference on Computational Cybernetics (ICCC 2008), Stara Lesna, Slovakia, 2008, pp. 63–68. [21] R.-E. Precup, and S. Preitl, “Multiobjective optimisation criteria in development of fuzzy controllers with dynamics”, in Preprints of IFAC Workshop on Control Applications of Optimisation (CAO 2003), Visegrad, Hungary, 2003, pp. 261–266. [22] H. Coppier, M. Chadli, S. Bruey, O. Guthmsnn, P. Delesalle, “Implementation of a fuzzy logic control for a silo’s level regulation in stone quarries”, Workshop on Advanced Fuzzy and Neural Control, Valenciennes, France, 2007. |