Home | Issues | Profile | History | Submission | Review
Vol: 59(73) No: 2 / December 2014 

Realization methods of continuous glucose monitoring systems
György Eigner
Obuda University, Budapest, Physiological Controls Group, 1034 Budapest, Hungary, phone: (+3670) 391-5853, e-mail: eigner.gyorgy@phd.uni-obuda.hu, web: http://www.physcon.uni-obuda.hu
Levente Kovács
Obuda University, Budapest, Physiological Controls Group, 1034 Budapest, Hungary, phone: (+361) 666-5585, e-mail: kovacs.levente@nik.uni-obuda.hu


Keywords: Continuous glucose monitoring; Glucose sensoring methods; Analysis methods; Analysis from body fluids

Abstract
Diabetes Mellitus, or shorter name diabetes is the generic name of a large group chronic metabolic diseases with several side effects on long term. Because of the penetration of this condition is increasing all over the world, the availability of highly advanced tools for monitoring is indispensable. These devices are the Continuous Glucose Monitoring (CGM) systems, which are suitable solution for individual and optimal solution of management of diabetes. In this paper we gave a summary study of the meaning, aims and available methods of CGM systems.

References
[1] A. Fonyó and E. Ligeti. Medical Biochemistry (in Hungarian), 3rd ed., Medicina Press. 2008.
[2] G. Danaei, M.M. Finucane, Y. Lu, G.M. Singh, M.J. Cowan and C.J. Paciorek. “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants”. Lancet, vol. 378(9785), pp. 31-40, 2011.
[3] Report of WHO/IDF consultation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia. Official Publication. 2006.
[4] S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes - Estimates for the year 2000 and projections for 2030”. Diab. Care, vol. 27(5), pp. 1047-1053, 2004.
[5] World Health Organization (WHO). Global status report on noncommunicable diseases 2010. Official Publication. Geneva, 2011.
[6] K.A. Benedict, S. Moassesfar, S. Adi, S.E. Gitelman, J.L. Brennan, M. McEnhill, P.G. Stock, A.A. Portale and A.M. Posselt. “Combined pancreatic islet and kidney transplantation in a child with unstable type 1 diabetes and end-stage renal disease”. Am. J. Transplant., vol. 13(8), pp. 2207-2210, 2013.
[7] K.J. Potter, C.Y. Westwell-Roper, A.M. Klimek-Abercrombie, G.L. Warnock and C.B. Verchere. “Death and Dysfunction of Transplanted β-Cells: Lessons Learned From Type 2 Diabetes?” Diabetes, vol. 63(1), pp. 12-19, 2014.
[8] J.G. Menting, J. Whittaker, M.B. Margetts, L.J. Whittaker, G.K.-W. Kong, B.J. Smith, C.J. Watson, L. Žáková, E. Kletvíková, J. Jiráček, S.J. Chan, D.F. Steiner, G.G. Dodson, A.M. Brzozowski, M.A. Weiss, C.W. Ward and M.C. Lawrence. “How insulin engages itsprimary binding site on the insulin receptor”. Nature, vol. 493, pp. 241-245, 2013.
[9] Y. Peng, JS. Park and D.A. Melton. “Betatrophin: A Hormone that Controls Pancreatic β-Cell Proliferation”. Cell Press, vol. 153(4), pp. 747-758, 2013.
[10] R. Harvey, Y. Wang, B. Grossman, M. Percival, W. Bevier, D. Finan, H. Zisser, D. Seborg, L. Jovanovic, F. Doyle and E. Dassau. “Quest for the artificial pancreas”. IEEE Eng Med Biol, vol. 29(2), pp. 53-62, 2010.
[11] S. Vaddiraju, D.J. Burgess, I. Tomazos, F.C. Jain, and F. Papadimitrakopoulos, “Technologies for Continuous Glucose Monitoring: Current Problems and Future Promises”. J. Diab. Scien. Techn., vol. 4(6), pp. 1540-1562, 2010.
[12] J.S. Krinsley. “Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients”. Mayo Clin Proc., vol. 78(12), pp. 1471-1478, 2003.
[13] F. Farrokhi, D. Smiley and G.E. Umpierrez. “Glycemic control in non-diabetic critically ill patients”. Best Pract. Res Clin. Endocr. Metab., vol. 25(5), pp. 813-824, 2011.
[14] V. Ádám (ed.). Medical Biochemistry (in Hungarian), 2nd ed., Medicina Press. 2009.
[15] P.E. Cryer. “Hypoglycemia”. Endocr. Emergen., Contemp. Endocr., vol. 74, pp. 33-41, 2014.
[16] R.P. Kiran, M. Turina, J. Hammel and V. Fazio. ”The clinical significance of an elevated postoperative glucose value in nondiabetic patients after colorectal surgery: evidence for the need for tight glucose control?”. Ann. Surg., vol. 258(4), pp. 599-604, 2013.
[17] M. Endara, D. Masden, J. Goldstein, S. Gondek, J. Steinberg and C. Attinger. ”The role of chronic and perioperative glucose management in high-risk surgical closures: a case for tighter glycemic control”. Plast. Reconstr. Surg., vol. 132(4), pp. 996-1004, 2013.
[18] M. Miller, M. J. Skladany, C. R. Ludwig, and J. S. Guthermann. “Convergence of continuous glucose monitoring and in-hospital tight glycemic control: closing the gap between caregivers and industry”. J. Diab. Scien. Techn., vol. 1(6), pp. 903–906, 2007.
[19] C. Cobelli, E. Renard and B. Kovatchev. “Artificial Pancreas: Pest, Present, Future”. Diabetes, vol. 60(11), pp. 2672-2682, 2011.
[20] F. Chee and F. Tyrone. Closed-Loop Control of Blood-Glucose. Lecture notes in Control and Information Sciences. Springer-Verlag. 2007.
[21] Food and Drug Administration (FDA), Department of Health & Human Dervices (DHHS). “Approval for Medtronic Minimed 530G system”. Official Authorization. 2013.
[22] N.S. Larson and J.E. Pinsker. “The role of continuous glucose monitoring in the care of children with type 1 diabetes”. Int. J. Pediatr. Endocr., 2013(1):8, 2013.
[23] H.R. Murphy. “Continuous Glucose Monitoring in Pregnancy: We Have the Technology but Not All the Answers”. Diab. Care, vol 36(7), pp. 1818-1819, 2013.
[24] N. Ramchandani and R.A. Heptulla. “New technologies for diabetes: a review of the present and the future”. Int. J. Pediatr. Endocrinol., 2012(1):28, 2012.
[25] S. Schwartz and G. Scheiner. “The Role of Continuous Glucose Monitoring in the Management of Type-1 and Type-2 Diabetes”. Integrated Diabetes Services LLC., “unpublished”, p. 17, 2012.
[26] N.S. Oliver, C. Toumazou, A.E.G. Cass and D.G. Johnston. “Glucose sensors: a review of current and emerging technology”. Diabet. Med., vol. 26, pp. 197–210, 2009.
[27] C. De Block, B. Manuel-Keenoy and L. Van Gaal. “A Review of Current Evidence with Continuous Glucose Monitoring in Patients with Diabetes”. J. Diab. Scien. Techn., vol. 2(4), pp. 718-727, 2008.
[28] J. Hermanides, M. Phillip and J.H. DeVries. “Current Application of Continuous Glucose Monitoring in the Treatment of Diabetes”. Diab. Care, vol. 34, suppl. 2, pp. 197-201, 2011.
[29] S.K. Vashist. “Continuous Glucose Monitoring Systems: A Review”. Diagnostics, vol. 3, pp. 385-412, 2013.
[30] M.S. Walker, S.J. Fondea, S. Salkind and R.A. Vigersky. “Advantages and Disadvantages of Realtime Continuous Glucose Monitoring in People with Type 2 Diabetes”. US Endocrin., vol. 8(1), pp. 22-26, 2012.
[31] J. Wang. “Electrochemical Glucose Biosensors”. Chem. Rev., vol. 108, pp. 814-825, 2008.
[32] E.H. Yoo and S.Y. Lee. “Glucose Biosensors: An Overview of Use in Clinical Practice”. Sensors, vol. 10, pp. 4558-4576, 2010.
[33] K.E. Toghill and R.G. Compton. “Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation”. Int. J. Electrochem. Scien., vol. 5, pp. 1246-1301, 2010.
[34] Y. Zhang, Y. Liu, L. Su, Z. Zhang, D. Huo, C. Hou and Y. Lei. “CuO nanowires based sensitive and selective non-enzymatic glucose detection”. Sens. and Act. B. Chem., vol. 191, pp. 86-93, 2014.
[35] A. Heller and B. Feldman. “Electrochemical Glucose Sensors and Their Applications in Diabetes Management”. Chem. Rev., vol. 108, pp. 2482-2505, 2008.
[36] V.V. Tuchin (ed.). Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, 1st ed., CRC Press. 2009.
[37] B.R. Jean, E.C Green and M.J McClung. “A microwave frequency sensor for non-invasive blood-glucose measurement”, IEEE SAS, pp. 4-7, February 2008 [Sensor Applications Symposium, USA, GA, Atlanta, p. 4-7, 2008].
[38] H. Park, H. Seo Yoon, U. Patil, R. Anoop, J. Lee, J. Lim, W. Lee and S. Chan Jun. “Radio frequency based label-free detection of glucose”. Biosens. Bioelectron., vol. 54, pp.141-145, 2014.
[39] D.C. Klonoff. “Overview of Fluorescence Glucose Sensing: A Technology with a Bright Future”. J. Diab. Scien. Techn., vol. 6(6), pp. 1242-1250, 2012.
[40] O. Amir, D. Weinstein, S. Zilberman, M. Less, D. Perl-Treves, H. Primack, A. Weinstein, E. Gabis, B. Fikhte and A. Karasik. “Continuous Noninvasive Glucose Monitoring Technology Based on “Occlusion Spectroscopy””. J. Diab. Scien. Techn., vol. 1(4), pp. 463-469, 2007.
[41] A. Pahade, V.M. Jadhav and V.J. Kadam. “Sonophoresis: An overview”. Int. J. Pharmac. Scien. Rev. & Res., vol 3(2), Article 005, p. 24, 2010.
[42] M.A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal and W. Mäntele. “In vivo noninvasive monitoring of glucose concentration in human epidermis by Mid Infrared pulsed photoacoustic spectroscopy”. Anal. Chem., vol. 85(2), pp. 1013-1020, 2013.
[43] K. Tonyushkine and J. H. Nichols. “Glucose Meters: A Review of technical Challenges to obtaining accurate results”. J. Diab. Scien. Techn., vol. 3(4), pp. 971-980, 2009.
[44] C.T.S. Ching and P. Connolly. “Reverse Iontophoresis: A new approach to measure blood glucose level”. Asian J. Health and Inf. Scien., vol. 1(4), pp. 393-410, 2007.
[45] S. Narasimham, G. Kaila and S. Anand. “Non-invasive glucose monitoring using impedance spectroscopy”. Int. J. Biomed. Eng. Techn., vol. 14, pp. 225-232, 2014.
[46] A. Tura, S. Sbrignadello, D Cianciavicchia, G. Pacini and P. Ravazzani. “A Low Frequency Electromagnetic Sensor for Indirect Measurement of Glucose Concentration: In Vitro Experiments in Different Conductive Solution”. Sensors, vol. 10, pp. 5346-5358, 2010.
[47] S. Gebhart, M. Faupel, R. Fowler, C. Kapsner, D. Lincoln, V. McGee, J. Pasqua, L. Steed. M. Wangsness, X. Fan and M. Vanstory. “Glucose Sensing in Transdermal Body Fluid Collected Under Continuous Vacuum Pressure Via Micropores in the Stratum Corneum”. Diab. Techn. Therap., vol. 5(2), 2003.
[48] A. El-Laboudi, N.S. Oliver, A. Cass and D. Johnston. “Use of microneedle array devices for continuous glucose monitoring: a review”. Diab. Technol. Ther., vol. 15(1), pp. 101-115, 2013.
[49] D. Guo, D. Zhang, L Zhang and G. Luo. “Non-invasive blood glucose monitoring for diabetics by means of breath signal analysis”. Sens. Actuat. B: Chem., vol 173, pp. 106-113, 2012.
[50] J.S. Krouwer and G.S. Cembrowski. “A Review of Standards and Statistics Used to Describe Blood Glucose Monitor Performance”. J. Diab. Scien. Techn., vol. 4(1), pp. 75-83, 2010.
[51] S.F. Clarke and J.R. Foster. ”A history of blood glucose meters and their role in self-monitoring of diabetes mellitus”. British J. Biomed. Scien., vol. 69(2), pp. 83-93, 2012.
[52] R.P. Agrawal, N. Sharma, M.S. Rathore, V.B. Gupta, S. Jain, V. Agarwal and S. Goyal. ”Noninvasive method for glucose level estimation by saliva”. J. Diab. Metab., vol, 4(5):266, p. 5, 2013.
[53] Wireless powered contact lens with glucose sensor. US Patent. Ref. number: US20120245444 A1. Inventors: B. Otiz, Y-T. Liao, B. Amirparviz and H. Yao. Owner: University of Washington. 2012.
[54] M. Breton and B. Kovatchev. “Analysis, Modeling and Simulation of the Accuracy of Continuous Glucose Sensors”. J. Diab. Scien. Techn., vol. 2(5), pp. 853-862, 2008.
[55] S.K. Garg, M. Voelmle and P.A. Gottlieb. “Time lag characterization of two continuous glucose monitoring systems”. Diab. Resear. Clin. Pract., vol. 87, pp. 348-353, 2010.
[56] R.A. Croce Jr., S. Vaddiraju, F. Papadimitrakopoulos and F.C. Jain. “Theoretical Analysis of the Performance of Glucose Sensors with Layer-by-Layer Assembled Outer Membranes”. Sensors, vol. 12, pp. 13402-13416, 2012.
[57] A. Facchinetti, G. Sparacino and C. Cobelli. “Modeling the Error of Continuous Glucose Monitoring Sensor Data: Critical Aspects Discussed through Simulation Studies”. J. Diab. Scien. Techn., vol. 4(1), 2010.
[58] V. Lodwig, B. Kulzer, O. Schnell and L. Heinemann. “Current Trends in Continuous Glucose Monitoring”. J. Diab. Scien. Techn., 1932296814525826, p. 8, 2014.
[59] Medtronic. User Guide, Guardian Real-Time Continuous Glucose Monitoring System. 2014.
[60] A. DeHennis, S. Tankiewicz, B. Raisoni, C. Long, T. Whitehurst and S. Colvin. “An Integrated Wireless Fluorimeter for a Long Term Implantable, Continuous Glucose Monitoring System” in 6th ATTD conference, Paris, France, 2013.
[61] S. Preitl and R.-E. Precup, “On the algorithmic design of a class of control systems based on providing the symmetry of open-loop Bode plots”. Buletinul Stiintific al U.P.T., Transactions on Automatic Control and Computer Science, vol. 41 (55), pp. 47-55, 1996.