Vol: 54(68) No: 4 / December 2009 Mechanical Properties Prediction of Thermoplastic Composites using Fuzzy Models Z. C. Johanyák Institute of Information Technologies, Kecskemét College, Faculty of Mechanical Engineering and Automation, Izsáki út 10., H-6000 Kecskemét, Hungary, phone: (+3676) 516-413, e-mail: johanyak.csaba@gamf.kefo.hu, web: johanyak.hu A. M. Ádámné Institute of Metal and Polymer Technology, Kecskemét College, Faculty of Mechanical Engineering and Automation, Izsáki út 10., H-6000 Kecskemét, Hungary, phone: (+3676) 516-392, e-mail: major.andrea@gamf.kefo.hu, web: www.gamf.hu/portal/?q=gamf/oktato/adamne_major_andrea Keywords: thermoplastic composite, fuzzy modeling, LESFRI, RBE-DSS Abstract The ability to predict mechanical properties of thermoplastic composites in order to satisfy the performance requirements is of great importance in course of the design. In this paper, a general method group for data driven fuzzy modeling and its application is presented. Two low complexity fuzzy models were generated for the prediction of Charpy impact strength and yield strength as a function of the percent amount of the components. The models take as input parameters the percentage of the nanotube and ABS. References [1] S. Kumar, H. Doshi, M. Srinivasaro, J. O. Park and D. A. Schiraldi, “Fibers from polypropylene/nano carbon fiber composites”, Polymer, vol. 43, pp. 1701-1703, 2002. [2] J. H. Koo: “Polymer nanocomposites, processing, characterization and applications”, New York: McGraw-Hill, 2006. [3] M. K. Seo and S. J. Park, “Electrical resistivity and rheologycal behavior of carbon nanotubes-filled polypropylene composites”, Chemical Physics Letters, vol. 395, pp. 44-48, 2004. [4] M. K. Seo, J. R. Lee and S. J. Park: “Crystallization kinetics and interfacial behaviors of polypropylene composites reinforced with multi-walled carbon nanotubes”, Material Science and Engineering:A, vol. 404, pp. 79-84, 2005. [5] I. Alig, D. Lellinger, S. M. Dudkin and P. Pötschke: “Conductivity spectroscopy on melt processed polypropylene-multiwalled carbon nanotube composites: Recovery after shear and crystallization”, Polymer, vol. 48, pp 1020-1029, 2007. [6] T.E. Changa, L.R. Jensenb, A. Kisliuka, R.B. Pipesc, R. Pyrzb and A.P. Sokolov, “Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite”, Polymer, vol. 46, pp. 439–444, 2005. [7] R.E. Gorga and R.E. Cohen, Polymer Science: B Polymer Physics, vol. 42(14), pp. 2690-2702, 2004. [8] T. Kashiwagi, E. Grulke, J. Hilding, K. Groth, R. Harris and K. Butler, “Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites”, Polymer, vol. 45, pp. 4227-4239, 2004. [9] D. Zilli, C. Chiliotte, M.M. Escobar, V. Bekeris, G.R. Rubiolo and A.L. Cukierman, “Magnetic properties of multi-walled carbon nanotube-epoxy composites”, Polymer, vol. 46, pp. 6090-6095, 2005. [10] M.A. Lopez, Manchado, L. Valentini, J. Biagiotti and J.M. Kenny, “Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing”, Carbon, vol. 43, pp. 1499-1505, 2005. [11] US Patent No. 5,749,649. and U.S. Patent No. 5,951.159. [12] K. Belina, P. Juhász, D. Csongor and N.R. Schott, “Interaction in PC/ABS Blends Prepared in a Dynamic Melt Mixer”, ANTEC 2001, Dallas, TX, Technical Papers XLVII, pp 2240, 2001. [13] S. Kovács, L. T. Kóczy, “Application of Interpolation-based Fuzzy Logic Reasoning in Behaviour-based Control Structures”, in Proceedings of IEEE International Conference on Fuzzy Systems, (FUZZ IEEE) Budapest, Hungary, 6 pp., 2004. [14] Z. C. Johanyák, R. Parthiban and G. Sekaran, “Fuzzy Modeling for an Anaerobic Tapered Fluidized Bed Reactor”, SCIENTIFIC BULLETIN of “Politehnica” University of Timisoara, ROMANIA, Transactions on AUTOMATIC CONTROL and COMPUTER SCIENCE, Vol: 52(66) No: 2 / 2007, pp.67-72., 2007. [15] K.W. Wong and T.D. Gedeon, “Petrophysical Properties Prediction Using Self-generating Fuzzy Rules Inference System with Modified Alpha-cut Based Fuzzy Interpolation”, in Proceedings of 7th International Conference of Neural Information Processing (ICONIP 2000), Korea, pp. 1088-1092, 2000. [16] Z.C. Johanyák and S. Kovács, “Polar-cut Based Fuzzy Model for Petrophysical Properties Prediction”, SCIENTIFIC BULLETIN of “Politehnica” University of Timisoara, ROMANIA, Transactions on AUTOMATIC CONTROL and COMPUTER SCIENCE, vol: 57(67), no: 4, pp. 195-200, 2008. [17] L.A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes”, in IEEE Transactions on System, Man and Cybernetics, col. 3, pp. 28-44, 1973. [18] E.H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller”, International Journal of Man Machine Studies, vol. 7, pp. 1-13, 1975. [19] P.M. Larsen, “Industrial application of fuzzy logic control”, in Int. Journal of Man Machine Studies, vol. 12(4), pp. 3-10, 1980. [20] L.T. Kóczy and K. Hirota, “Approximate reasoning by linear rule interpolation and general approximation”, International Journal of Approximative Reasoning, vol. 9, pp. 197-225, 1993. [21] S. Kovács, “Extending the Fuzzy Rule Interpolation \"FIVE\" by Fuzzy Observation”, in Advances in Soft Computing, Computational Intelligence, Theory and Applications, Bernd Reusch (Ed.), Springer Germany, pp. 485-497, 2006. [22] K. W. Wong, D. Tikk, T. D. Gedeon and L. T. Kóczy, “Fuzzy rule interpolation for multidimensional input spaces with applications”. IEEE Trans on Fuzzy Systems, vol. 13, no. 6, pp. 809-819, 2005. [23] P. Baranyi, L.T. Kóczy, and T.D. Gedeon, “A Generalized Concept for Fuzzy Rule Interpolation”, in IEEE Transaction on Fuzzy Systems, vol. 12, no. 6, pp. 820-837, 2004. [24] Z.C. Johanyák and S. Kovács, “Fuzzy Rule Interpolation by the Least Squares Method”, in Proceedings of 7th International Symposium of Hungarian Researchers on Computational Intelligence (HUCI 2006), Budapest, Hungary, pp. 495-506, 2006. [25] Z.H. Huang, and Q. Shen, “Fuzzy interpolation with generalized representative values”, in Proceedings of the UK Workshop on Computational Intelligence, pp. 161-171, 2004. [26] Z.C. Johanyák, and S. Kovács, “Fuzzy Rule Interpolation Based on Polar Cuts”, in Computational Intelligence, Theory and Applications, Springer Berlin Heidelberg, pp. 499-511, 2006. [27] Shepard, D.: A two dimensional interpolation function for irregularly spaced data, in Proceedings of the 23rd ACM International Conference, New York, USA, 1968, pp. 517-524. [28] L.T. Kóczy, J. Botzheim and T.D. Gedeon, “Fuzzy models and interpolation”, in M. Nikravesh, J. Kacprzyk, and L. A. Zadeh, editors, Forging New Frontiers: Fuzzy Pioneers I & II, volume 217 of Studies in Fuzziness and Soft Computing. Springer, 2007. [29] B. Kosko, “Optimal fuzzy rules cover extrema”, International Journal of Intelligent Systems, Vol. 10, pp. 249-255, 1995. [30] Z.C. Johanyák and S. Kovács, “Sparse Fuzzy System Generation by Rule Base Extension”, in Proceedings of the 11th IEEE International Conference of Intelligent Engineering Systems (IEEE INES 2007), Budapest, Hungary, pp. 99-104, 2007. [31] A. Chong, T.D. Gedeon and L.T. Kóczy, “Projection Based Method for Sparse Fuzzy System Generation”, in Proceedings of 2nd International Conference on Scientific Computation and Soft Computing, Crete, Greece, pp. 321-325, 2002. [32] L. Gál and L.T. Kóczy, “Advanced Bacterial Memetic Algorithms”, Acta Technica Jaurinensis, Series Intelligentia Computatorica, vol. 1. no. 3, pp. 225-243, 2008. [33] J. Botzheim, B. Hámori, B., and Kóczy, L.T.: Extracting trapezoidal membership functions of a fuzzy rule system by bacterial algorithm, 7th Fuzzy Days, Dortmund, Springer-Verlag, pp. 218-227, 2001. [34] R.E. Precup, S. Preitl, J.K. Tar, M.L. Tomescu, M. Takács, P. Korondi and P. Baranyi, “Fuzzy control system performance enhancement by Iterative Learning Control”, IEEE Transactions on Industrial Electronics, vol. 55, no. 9, pp. 3461-3475, 2008. [35] S. Blažič and I. Škrjanc, “Design and stability analysis of fuzzy model-based predictive control - a case study”, Journal of Intelligent and Robotic Systems, vol. 49, no. 3, pp. 279-292, 2007. [36] D. Hládek, J. Vaščák, and P. Sinčák, “Hierarchical fuzzy inference system for robotic pursuit evasion task”, in Proceedings of 6th International Symposium on Applied Machine Intelligence and Informatics, (SAMI 2008), Herľany, Slovakia, pp. 273-277, 2008. [37] S.M. Chen and Y.K. Ko, “Fuzzy Interpolative Reasoning for Sparse Fuzzy Rule-Based Systems Based on a-cuts and Transformations techniques”, IEEE Transactions on Fuzzy Systems, vol. 16, no. 6, pp. 1626-1648, 2008. |