Home | Issues | Profile | History | Submission | Review
Vol: 55(69) No: 4 / December 2010 

Optimal Moving Sliding Mode Control with Application to Electrical Servo Drive
Dragan Antić
Department of Automatics, University of Niš, Faculty of Electronic Engineering, Niš, Republic of Serbia, phone: +38118529364, e-mail: dragan.antic@elfak.ni.ac.rs
Marko Milojković
Department of Automatics, University of Niš, Faculty of Electronic Engineering, Niš, Republic of Serbia, e-mail: marko.milojkovic@elfak.ni.ac.rs
Saša Nikolić
Department of Automatics, University of Niš, Faculty of Electronic Engineering, Niš, Republic of Serbia, e-mail: sasa.s.nikolic@elfak.ni.ac.rs
Staniša Perić
Department of Automatics, University of Niš, Faculty of Electronic Engineering, Niš, Republic of Serbia, e-mail: stanisa.peric@elfak.ni.ac.rs


Keywords: fuzzy sliding mode control, time-varying sliding surface, optimal control, electrical servo drive

Abstract
A new controller for optimal speed control of a electrical servo drive is presented in this paper. Controller is based on sliding mode control theory with a moving (time-varying) sliding surface. Sliding mode achieves good transient performance and system robustness. Drawbacks of the sliding mode (sensitivity in the reaching phase, presence of chattering) have been overcome by using fuzzy logic component that continuously varies the sliding slope, based on the current tracking error. Fuzzy part has been optimally adjusted by genetic algorithm technique. Proposed optimal fuzzy sliding mode control has been applied to an experimental electrical servo drive system. Performed experiments with the comparative analysis verifies the efficiency, excellent performance and robustness of such control for a electrical servo drive.

References
[1] V. I. Utkin, “Variable structure systems with sliding modes”, IEEE Trans. Aut. Cont., vol. 22(2), pp. 212-221, 1977.
[2] V. I. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electromechanical Systems, CRC Press, 1999.
[3] W. Perruquetti and J. P. Barbot, Sliding Mode Control in Engineering, Marcel Dekker Inc., 2002.
[4] L. A. Zadeh, “Fuzzy sets”, Information and Control, vol. 8, pp. 338-353, 1965.
[5] K. M. Passino and S. Yurkovich, Fuzzy Control, Addison-Wesley, 1998.
[6] R. Palm, D. Driankov, and H. Hellendoorn, Model Based Fuzzy Control, Springer-Verlag, Berlin, 1996.
[7] D. Antić and S. Dimitrijević, “Non-minimum phase plant control using fuzzy sliding mode”, Electronic Letters, vol. 34, no. 11, pp. 1156-1158, 1998.
[8] D. Mitić, M. Milojković, and D. Antić, “Tracking system design based on digital minimum variance control with fuzzy sliding mode”, TELSIKS 2007, Niš, Serbia, September 26.-28., pp. 494-497, 2007.
[9] Q. Ha, Q. Nguyen, D. Rye, and H. Durrant-Whyte, “Fuzzy sliding-mode controllers with applications”, IEEE Trans. Ind. Electr., vol. 48, no. 1, pp. 38-46, 2001.
[10] S. J. Huang and W. C. Lin, “Adaptive fuzzy controller with sliding surface for vehicle suspension control”, IEEE Trans. Fuzzy Systems, vol.11, no. 4, pp. 550-559, 2003.
[11] S. B. Choi, C. C. Cheong, and D. W. Park, “Moving switching surfaces for robust control of second order variable structure systems”, Int. Journal Control, vol.58., no. 1, pp. 229-245, 1993.
[12] A. Bartoszewicz, “A comment on a time-varying sliding surface for fast and robust tracking control of second-order uncertain systems”, Automatica, vol. 31, no. 12, pp. 1893-1895, 1995.
[13] S. Tokat, I. Eksin, M. Guzelkaya, and M. T. Soylemez, “Design of a sliding mode controller with a nonlinear time-varying sliding surface”, Trans. Inst. Meas. Cont., vol. 25, no. 2, pp. 145-162, 2003.
[14] J. Zhang, K. Jiang, Z. Chen, and Z. Zhao, “Global robust fuzzy sliding mode control for a class of non-linear system”, Trans. Inst. Meas. Cont., vol. 28, no. 3, pp. 219–227, 2006.
[15] N. Yagiz, Y. Hacioglu, and Y. Taskin, “Fuzzy sliding-mode control of active suspensions”, IEEE Trans. Ind. Electr., vol. 55, no. 11, pp. 3883-3890, 2008.
[16] J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, 1975.
[17] M. Mitchel, An Introduction to Genetic Algorithms, MIT Press, Cambridge, 1996.
[18] B. Danković, D. Antić, Z. Jovanović, and M. Milojković, “Genetic algorithms applied in parameter optimization of casacade connected systems”, ICEST 2007, Ohrid, Macedonia, June 24.-27., pp. 557-560, 2007.
[19] O. Cordon, F. Herrera, F. Hoffmann, and L. Magdalena, Genetic Fuzzy Systems, World Scientific, Singapore, 2001.
[20] M. Cooper and J. Vidal, “Genetic design of fuzzy controllers: The cart and jointed-pole problem”, Third IEEE International Conference on Fuzzy Systems, Orlando, Florida, pp. 1332-1337, 1994.
[21] D. Antić and M. Milojković, “Nonlinear system control by using genetic algorithms and fuzzy sliding mode”, TEHNIKA-Elektrotehnika, vol. 56, pp. 9-16, 2007.
[22] D. Antić, M. Milojković, and D. Mitić, “An improvement of fuzzy sliding mode control of nonminimum phase plants by using genetic algorithms”, SAUM 2007, Niš, Serbia, November 22.-23., pp. 129-132, 2007.
[23] D. Antić, M. Milojković, S. Nikolić, and S. Perić, “Optimal fuzzy sliding mode control with a time-varying sliding surface”, Proceedings of the 8th International Conference on Computational Cybernetics and 9th International Conference on Technical Informatics, ICCC-CONTI 2010, Timisoara, Romania, May 27.-29., 2010, pp. 149-153.
[24] D. Antić, M. Milojković, and S. Nikolić, “Fuzzy Sliding Mode Control with Additional Fuzzy Control Component”, Facta Univ. S. Aut. Cont. Rob., vol. 8, no. 1, pp. 25-34, 2009.
[25] Inteco, Modular Servo System-User’s Manual, Available at www.inteco.com.pl, 2008.